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Introduction

G(s)
u(t) y(t)

I The goal of control is to choose the input u(t) so that the plant
behaves in a desirable way.

I Often we want the output to follow some reference r(t).
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State Feedback

Consider a state space model:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

I The state x(t) contains all information needed to predict future
outputs.

I Make sense to use the state when deciding what u(t) should be.
I Linear state feedback:

u(t) = −Lx(t) + Lrr(t).

I The designer has to determine suitable L and Lr.
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ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

I The state x(t) contains all information needed to predict future
outputs.

I Make sense to use the state when deciding what u(t) should be.

I Linear state feedback:

u(t) = −Lx(t) + Lrr(t).

I The designer has to determine suitable L and Lr.

2 / 10 per.mattsson@hig.se

mailto:per.mattsson@hig.se


State Feedback

Consider a state space model:
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State feedback

Consider a state space model:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

with the state feedback

u(t) = −Lx(t) + Lrr(t).

Inserting u(t) into the state equation gives

ẋ(t) = Ax(t) +B(−Lx(t) + Lrr(t)) = (A−BL)x(t) +BLrr(t).

I Closed-loop system: Gc(s) = C(sI −A+BL)−1BLr.
I Poles: Given by the eigenvalues of A−BL.
I Static gain: Gc(0) = C(−A+BL)−1BLr.
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ẋ(t) = Ax(t) +B(−Lx(t) + Lrr(t)) = (A−BL)x(t) +BLrr(t).

I Closed-loop system: Gc(s) = C(sI −A+BL)−1BLr.
I Poles: Given by the eigenvalues of A−BL.
I Static gain: Gc(0) = C(−A+BL)−1BLr.

3 / 10 per.mattsson@hig.se

mailto:per.mattsson@hig.se


Example: State feedback

ẋ(t) =

[
−2 −1
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
0 1

]
x(t).

Let L =
[
`1 `2

]
.

Then

A−BL =

[
−2 −1
1 0

]
−

[
1
0

] [
`1 `2

]
=

[
−2− `1 −1− `2

1 0

]
.

The eigenvalues of A−BL are given by the zeros to the
characteristic polynomial

det(sI −A+BL) =

∣∣∣∣s+ 2 + `1 1 + `2
−1 s

∣∣∣∣
= s2 + (2 + `1)s+ 1 + `2.

By choosing `1 and `2 we can get any desired characteristic equation,
and hence any desired poles.
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ẋ(t) =

[
−2 −1
1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
0 1

]
x(t).

Let L =
[
`1 `2

]
. Then

A−BL =

[
−2 −1
1 0

]
−
[
1
0

] [
`1 `2

]
=

[
−2− `1 −1− `2

1 0

]
.

The eigenvalues of A−BL are given by the zeros to the
characteristic polynomial

det(sI −A+BL) =

∣∣∣∣s+ 2 + `1 1 + `2
−1 s

∣∣∣∣
= s2 + (2 + `1)s+ 1 + `2.

By choosing `1 and `2 we can get any desired characteristic equation,
and hence any desired poles.

4 / 10 per.mattsson@hig.se

mailto:per.mattsson@hig.se


Example: State feedback
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Example: State feedback

With the state feedback u(t) = −
[
`1 `2

]
x(t) + Lrr(t) the

closed-loop systems poles are the solutions to:

s2 + (2 + `1)s+ 1 + `2 = 0.

If we want the poles to be −2 and −3, then the characteristic
polynomial should be

(s+ 2)(s+ 3) = s2 + 5s+ 6.

We get this by choosing `1 = 3 and `2 = 5. The static gain will then be

Gc(0) = C(−A+BL)−1BLr.

To get static gain equal to 1 we thus choose

Lr =
1

C(−A+BL)−1B
= 6

Hence, to get poles −2 and −3, and static gain 1, choose

u(t) = −
[
3 5

]
x(t) + 6r(t).
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Controllability

I Remember that a state space model is controllable if and only if
the controllability matrix

S =
[
B AB · · · An−1B

]
has full rank.

I We can place the eigenvalues of A−BL anywhere we want by
choosing L if and only if the state space model is controllable.
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Observers

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).

I One problem with state feedback is that the full state x(t) is
typically not measured. We only measure the output y(t).

I If x(t) is not measured, then the controller cannot compute

u(t) = −Lx(t) + Lrr(t).

I Solution: Use measured y(t) to find an estimate x̂(t) of x(t).
I Observer:

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)).

I The designer has to choose K so that the estimation error
x̃(t) = x(t)− x̂(t) is well-behaved.
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Observer

Consider the state space model

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

and the observer

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)).

The state estimation error x̃(t) = x(t)− x̂(t) then satisfy

˙̃x(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +Bu(t)− (Ax̂(t) +Bu(t) +K(Cx(t)− Cx̂(t)))

= (A−KC)(x(t)− x̂(t)) = (A−KC)x̃(t).
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Observer

I We have seen that the estimation error for the observer satisfy

˙̃x(t) = (A−KC)x̃(t) =⇒ x̃(t) = e(A−KC)tx̃(0).

I If all eigenvalues of A−KC lies strictly in the left half-plane,
then the error x̃(t) will go to zero as t→∞.

I The eigenvalues of A−KC are called the observer poles.
I K can be chosen to get any desired observer poles if and only if

the system is observable.
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Feedback from reconstructed state

I If an observer is used to find an estimate of x(t), then we can use
feedback from the reconstructed states. That is:

u(t) = −Lx̂(t) + Lrr(t)

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)),

where K,L and Lr has to be designed.

Lr System

ObserverL

u(t) y(t)

x̂(t)

−

r(t) +
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