Review of Automatic Control

State Feedback

Per Mattsson

per.mattsson@hig.se

Introduction

- The goal of control is to choose the input $u(t)$ so that the plant behaves in a desirable way.

Introduction

- The goal of control is to choose the input $u(t)$ so that the plant behaves in a desirable way.
- Often we want the output to follow some reference $r(t)$.

State Feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

- The state $x(t)$ contains all information needed to predict future outputs.

State Feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}
$$

- The state $x(t)$ contains all information needed to predict future outputs.
- Make sense to use the state when deciding what $u(t)$ should be.

State Feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}
$$

- The state $x(t)$ contains all information needed to predict future outputs.
- Make sense to use the state when deciding what $u(t)$ should be.
- Linear state feedback:

$$
u(t)=-L x(t)+L_{r} r(t)
$$

State Feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

- The state $x(t)$ contains all information needed to predict future outputs.
- Make sense to use the state when deciding what $u(t)$ should be.
- Linear state feedback:

$$
u(t)=-L x(t)+L_{r} r(t) .
$$

- The designer has to determine suitable L and L_{r}.

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Inserting $u(t)$ into the state equation gives
$\dot{x}(t)=A x(t)+B\left(-L x(t)+L_{r} r(t)\right)$

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Inserting $u(t)$ into the state equation gives
$\dot{x}(t)=A x(t)+B\left(-L x(t)+L_{r} r(t)\right)=(A-B L) x(t)+B L_{r} r(t)$.

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Inserting $u(t)$ into the state equation gives
$\dot{x}(t)=A x(t)+B\left(-L x(t)+L_{r} r(t)\right)=(A-B L) x(t)+B L_{r} r(t)$.

- Closed-loop system: $G_{c}(s)=C(s I-A+B L)^{-1} B L_{r}$.

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Inserting $u(t)$ into the state equation gives
$\dot{x}(t)=A x(t)+B\left(-L x(t)+L_{r} r(t)\right)=(A-B L) x(t)+B L_{r} r(t)$.

- Closed-loop system: $G_{c}(s)=C(s I-A+B L)^{-1} B L_{r}$.
- Poles: Given by the eigenvalues of $A-B L$.

State feedback

Consider a state space model:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

with the state feedback

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Inserting $u(t)$ into the state equation gives
$\dot{x}(t)=A x(t)+B\left(-L x(t)+L_{r} r(t)\right)=(A-B L) x(t)+B L_{r} r(t)$.

- Closed-loop system: $G_{c}(s)=C(s I-A+B L)^{-1} B L_{r}$.
- Poles: Given by the eigenvalues of $A-B L$.
- Static gain: $G_{c}(0)=C(-A+B L)^{-1} B L_{r}$.

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t) . \\
& \text { Let } L=\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right] .
\end{aligned}
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2-\ell_{1} & -1-\ell_{2} \\
1 & 0
\end{array}\right]
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2-\ell_{1} & -1-\ell_{2} \\
1 & 0
\end{array}\right]
$$

The eigenvalues of $A-B L$ are given by the zeros to the characteristic polynomial

$$
\operatorname{det}(s I-A+B L)
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t) .
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2-\ell_{1} & -1-\ell_{2} \\
1 & 0
\end{array}\right]
$$

The eigenvalues of $A-B L$ are given by the zeros to the characteristic polynomial

$$
\operatorname{det}(s I-A+B L)=\left|\begin{array}{cc}
s+2+\ell_{1} & 1+\ell_{2} \\
-1 & s
\end{array}\right|
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t) .
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2-\ell_{1} & -1-\ell_{2} \\
1 & 0
\end{array}\right]
$$

The eigenvalues of $A-B L$ are given by the zeros to the characteristic polynomial

$$
\begin{aligned}
\operatorname{det}(s I-A+B L) & =\left|\begin{array}{cc}
s+2+\ell_{1} & 1+\ell_{2} \\
-1 & s
\end{array}\right| \\
& =s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}
\end{aligned}
$$

Example: State feedback

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t) .
\end{aligned}
$$

Let $L=\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right]$. Then

$$
A-B L=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2-\ell_{1} & -1-\ell_{2} \\
1 & 0
\end{array}\right]
$$

The eigenvalues of $A-B L$ are given by the zeros to the characteristic polynomial

$$
\begin{aligned}
\operatorname{det}(s I-A+B L) & =\left|\begin{array}{cc}
s+2+\ell_{1} & 1+\ell_{2} \\
-1 & s
\end{array}\right| \\
& =s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}
\end{aligned}
$$

By choosing ℓ_{1} and ℓ_{2} we can get any desired characteristic equation, and hence any desired poles.

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$.

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$. The static gain will then be

$$
G_{c}(0)
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$. The static gain will then be

$$
G_{c}(0)=C(-A+B L)^{-1} B L_{r} .
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$. The static gain will then be

$$
G_{c}(0)=C(-A+B L)^{-1} B L_{r} .
$$

To get static gain equal to 1 we thus choose

$$
L_{r}=\frac{1}{C(-A+B L)^{-1} B}
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$. The static gain will then be

$$
G_{c}(0)=C(-A+B L)^{-1} B L_{r} .
$$

To get static gain equal to 1 we thus choose

$$
L_{r}=\frac{1}{C(-A+B L)^{-1} B}=6
$$

Example: State feedback

With the state feedback $u(t)=-\left[\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right] x(t)+L_{r} r(t)$ the closed-loop systems poles are the solutions to:

$$
s^{2}+\left(2+\ell_{1}\right) s+1+\ell_{2}=0
$$

If we want the poles to be -2 and -3 , then the characteristic polynomial should be

$$
(s+2)(s+3)=s^{2}+5 s+6
$$

We get this by choosing $\ell_{1}=3$ and $\ell_{2}=5$. The static gain will then be

$$
G_{c}(0)=C(-A+B L)^{-1} B L_{r} .
$$

To get static gain equal to 1 we thus choose

$$
L_{r}=\frac{1}{C(-A+B L)^{-1} B}=6
$$

Hence, to get poles -2 and -3 , and static gain 1, choose

$$
u(t)=-\left[\begin{array}{ll}
3 & 5
\end{array}\right] x(t)+6 r(t)
$$

Controllability

- Remember that a state space model is controllable if and only if the controllability matrix

$$
\mathcal{S}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has full rank.

Controllability

- Remember that a state space model is controllable if and only if the controllability matrix

$$
\mathcal{S}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has full rank.

- We can place the eigenvalues of $A-B L$ anywhere we want by choosing L if and only if the state space model is controllable.

Observers

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

- One problem with state feedback is that the full state $x(t)$ is typically not measured. We only measure the output $y(t)$.

Observers

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

- One problem with state feedback is that the full state $x(t)$ is typically not measured. We only measure the output $y(t)$.
- If $x(t)$ is not measured, then the controller cannot compute

$$
u(t)=-L x(t)+L_{r} r(t)
$$

Observers

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t) .
\end{aligned}
$$

- One problem with state feedback is that the full state $x(t)$ is typically not measured. We only measure the output $y(t)$.
- If $x(t)$ is not measured, then the controller cannot compute

$$
u(t)=-L x(t)+L_{r} r(t)
$$

- Solution: Use measured $y(t)$ to find an estimate $\hat{x}(t)$ of $x(t)$.

Observers

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t) .
\end{aligned}
$$

- One problem with state feedback is that the full state $x(t)$ is typically not measured. We only measure the output $y(t)$.
- If $x(t)$ is not measured, then the controller cannot compute

$$
u(t)=-L x(t)+L_{r} r(t)
$$

- Solution: Use measured $y(t)$ to find an estimate $\hat{x}(t)$ of $x(t)$.
- Observer:

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
$$

Observers

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) .
\end{aligned}
$$

- One problem with state feedback is that the full state $x(t)$ is typically not measured. We only measure the output $y(t)$.
- If $x(t)$ is not measured, then the controller cannot compute

$$
u(t)=-L x(t)+L_{r} r(t)
$$

- Solution: Use measured $y(t)$ to find an estimate $\hat{x}(t)$ of $x(t)$.
- Observer:

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

- The designer has to choose K so that the estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ is well-behaved.

Observer

Consider the state space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

Observer

Consider the state space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

The state estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ then satisfy

$$
\dot{\tilde{x}}(t)=\dot{x}(t)-\dot{\hat{x}}(t)
$$

Observer

Consider the state space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

The state estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ then satisfy

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\dot{x}(t)-\dot{\hat{x}}(t) \\
& =A x(t)+B u(t)-(A \hat{x}(t)+B u(t)+K(C x(t)-C \hat{x}(t)))
\end{aligned}
$$

Observer

Consider the state space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

The state estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ then satisfy

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\dot{x}(t)-\dot{\hat{x}}(t) \\
& =A x(t)+B u(t)-(A \hat{x}(t)+B u(t)+K(C x(t)-C \hat{x}(t))) \\
& =(A-K C)(x(t)-\hat{x}(t))
\end{aligned}
$$

Observer

Consider the state space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

The state estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ then satisfy

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\dot{x}(t)-\dot{\hat{x}}(t) \\
& =A x(t)+B u(t)-(A \hat{x}(t)+B u(t)+K(C x(t)-C \hat{x}(t))) \\
& =(A-K C)(x(t)-\hat{x}(t))=(A-K C) \tilde{x}(t)
\end{aligned}
$$

Observer

Consider the state space model

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

and the observer

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t)) .
$$

The state estimation error $\tilde{x}(t)=x(t)-\hat{x}(t)$ then satisfy

$$
\begin{aligned}
\dot{\tilde{x}}(t) & =\dot{x}(t)-\dot{\hat{x}}(t) \\
& =A x(t)+B u(t)-(A \hat{x}(t)+B u(t)+K(C x(t)-C \hat{x}(t))) \\
& =(A-K C)(x(t)-\hat{x}(t))=(A-K C) \tilde{x}(t)
\end{aligned}
$$

Hence, if the initial estimation error is $\tilde{x}(0)$, then

$$
\tilde{x}(t)=e^{(A-K C) t} \tilde{x}(0)
$$

Observer

- We have seen that the estimation error for the observer satisfy

$$
\dot{\tilde{x}}(t)=(A-K C) \tilde{x}(t) \Longrightarrow \tilde{x}(t)=e^{(A-K C) t} \tilde{x}(0)
$$

Observer

- We have seen that the estimation error for the observer satisfy

$$
\dot{\tilde{x}}(t)=(A-K C) \tilde{x}(t) \Longrightarrow \tilde{x}(t)=e^{(A-K C) t} \tilde{x}(0)
$$

- If all eigenvalues of $A-K C$ lies strictly in the left half-plane, then the error $\tilde{x}(t)$ will go to zero as $t \rightarrow \infty$.

Observer

- We have seen that the estimation error for the observer satisfy

$$
\dot{\tilde{x}}(t)=(A-K C) \tilde{x}(t) \Longrightarrow \tilde{x}(t)=e^{(A-K C) t} \tilde{x}(0)
$$

- If all eigenvalues of $A-K C$ lies strictly in the left half-plane, then the error $\tilde{x}(t)$ will go to zero as $t \rightarrow \infty$.
- The eigenvalues of $A-K C$ are called the observer poles.

Observer

- We have seen that the estimation error for the observer satisfy

$$
\dot{\tilde{x}}(t)=(A-K C) \tilde{x}(t) \Longrightarrow \tilde{x}(t)=e^{(A-K C) t} \tilde{x}(0)
$$

- If all eigenvalues of $A-K C$ lies strictly in the left half-plane, then the error $\tilde{x}(t)$ will go to zero as $t \rightarrow \infty$.
- The eigenvalues of $A-K C$ are called the observer poles.
- K can be chosen to get any desired observer poles if and only if the system is observable.

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

where K, L and L_{r} has to be designed.

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

where K, L and L_{r} has to be designed.

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

where K, L and L_{r} has to be designed.

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

where K, L and L_{r} has to be designed.

Feedback from reconstructed state

- If an observer is used to find an estimate of $x(t)$, then we can use feedback from the reconstructed states. That is:

$$
\begin{aligned}
& u(t)=-L \hat{x}(t)+L_{r} r(t) \\
& \dot{\hat{x}}(t)=A \hat{x}(t)+B u(t)+K(y(t)-C \hat{x}(t))
\end{aligned}
$$

where K, L and L_{r} has to be designed.

