Review of Automatic Control
 Frequency response

Per Mattsson

per.mattsson@hig.se

Introduction

- We have seen how the system reacts to a step in the input.

Introduction

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.

Introduction

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.
- Many signals can be written as a sum of sinusoids of different frequencies (Fourier series).

Introduction

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.
- Many signals can be written as a sum of sinusoids of different frequencies (Fourier series).
- For a linear system the output is then a linear combination of the frequency responses for each frequency in the input.

Frequency response

Consider the sinusoid input

$$
u(t)=K \sin (\omega t+\phi)
$$

Frequency response

Consider the sinusoid input

$$
u(t)=K \sin (\omega t+\phi) .
$$

If the system $G(s)$ is stable then, after the transients have died out,

$$
y(t)=|G(i \omega)| K \sin (\omega t+\phi+\arg (G(i \omega))) .
$$

Frequency response

Consider the sinusoid input

$$
u(t)=K \sin (\omega t+\phi) .
$$

If the system $G(s)$ is stable then, after the transients have died out,

$$
y(t)=|G(i \omega)| K \sin (\omega t+\phi+\arg (G(i \omega))) .
$$

- Amplitude gain: $|G(i \omega)|$.

Frequency response

Consider the sinusoid input

$$
u(t)=K \sin (\omega t+\phi) .
$$

If the system $G(s)$ is stable then, after the transients have died out,

$$
y(t)=|G(i \omega)| K \sin (\omega t+\phi+\arg (G(i \omega)))
$$

- Amplitude gain: $|G(i \omega)|$.
- Phase shift: $\arg (G(i \omega))$.

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

- Amplitude gain: $|G(i \omega)|$

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

- Amplitude gain: $|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}$.

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

- Amplitude gain: $|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}$.
- Phase shift: $\arg (G(i \omega))=$

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

- Amplitude gain: $|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}$.
- Phase shift: $\arg (G(i \omega))=-\arctan (7 \omega)$.

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

- Amplitude gain: $|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}$.
- Phase shift: $\arg (G(i \omega))=-\arctan (7 \omega)$.

The input $u(t)=\sin (\omega t)$ thus give (after the transients have died out)

$$
y(t)=\frac{1}{\sqrt{1+49 \omega^{2}}} \sin (\omega t-\arctan (7 \omega))
$$

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

$$
\omega=0.1,|G(j \omega)|=0.82, \arg (G(j \omega))=-0.61 \mathrm{rad}
$$

Input: $u(t)=\sin (0.1 t)$.
After transients: $y(t)=0.82 \sin (\omega t-0.61)$.

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

$$
\omega=0.1,|G(j \omega)|=0.82, \arg (G(j \omega))=-0.61 \mathrm{rad}
$$

Input: $u(t)=\sin (0.1 t)$.
After transients: $y(t)=0.82 \sin (\omega t-0.61)$.
Actual output: $y(t)$ (at rest at $t=0$).

Example: Low pass filter

Consider the system

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{1+7 s}
$$

$$
\omega=1,|G(j \omega)|=0.14, \arg (G(j \omega))=-1.43 \mathrm{rad}
$$

Input: $u(t)=\sin (t)$.
After transients: $y(t)=0.14 \sin (t-1.43)$.
Actual output: $y(t)$ (at rest at $t=0$).

Bode plots

- The amplitude gain $|G(i \omega)|$ and the phase shift $\arg (G(i \omega))$ shows how the system $G(s)$ reacts to different frequencies ω in the input.

Bode plots

- The amplitude gain $|G(i \omega)|$ and the phase shift $\arg (G(i \omega))$ shows how the system $G(s)$ reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω.

Bode plots

- The amplitude gain $|G(i \omega)|$ and the phase shift $\arg (G(i \omega))$ shows how the system $G(s)$ reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω.
- Such plots are called Bode plots, after the American researcher Hendrik Wade Bode, who originally started using such plots in the 1930s.

Bode plots

- The amplitude gain $|G(i \omega)|$ and the phase shift $\arg (G(i \omega))$ shows how the system $G(s)$ reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω.
- Such plots are called Bode plots, after the American researcher Hendrik Wade Bode, who originally started using such plots in the 1930s.
- A typical Bode plots:
- Frequency: Often in radians/s, in logarithmic scale.
- Amplitude gain: Often plotted in decibel,

$$
|G(i \omega)|_{d B}=20 \log _{10}|G(i \omega)|
$$

- Phase shift: Often plotted in linear scale, with degrees as the unit.

Example

$$
G(s)=\frac{1}{1+7 s}, \quad|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}, \quad \arg (G(i \omega))=-\arctan (7 \omega) .
$$

Example

$$
G(s)=\frac{1}{1+7 s}, \quad|G(i \omega)|=\frac{1}{\sqrt{1+49 \omega^{2}}}, \quad \arg (G(i \omega))=-\arctan (7 \omega) .
$$

Matlab:

$$
\begin{aligned}
& » G=\operatorname{tf}\left(\left[\begin{array}{ll}
1
\end{array}\right],\left[\begin{array}{ll}
7 & 1
\end{array}\right]\right) \\
& \text { » } \operatorname{bode}(G)
\end{aligned}
$$

Bode plots for systems connected in series

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|
$$

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|=\left|G_{1}(i \omega)\right|\left|G_{2}(i \omega)\right|
$$

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|=\left|G_{1}(i \omega)\right|\left|G_{2}(i \omega)\right|
$$

In decibel we thus get

$$
|G(i \omega)|_{d B}=20 \log _{10}\left(\left|G_{1}(i \omega)\right|\right)+20 \log _{10}\left(\left|G_{2}(i \omega)\right|\right)
$$

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|=\left|G_{1}(i \omega)\right|\left|G_{2}(i \omega)\right|
$$

In decibel we thus get

$$
\begin{aligned}
|G(i \omega)|_{d B} & =20 \log _{10}\left(\left|G_{1}(i \omega)\right|\right)+20 \log _{10}\left(\left|G_{2}(i \omega)\right|\right) \\
& =\left|G_{1}(i \omega)\right|_{d B}+\left|G_{2}(i \omega)\right|_{d B} .
\end{aligned}
$$

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|=\left|G_{1}(i \omega)\right|\left|G_{2}(i \omega)\right|
$$

In decibel we thus get

$$
\begin{aligned}
|G(i \omega)|_{d B} & =20 \log _{10}\left(\left|G_{1}(i \omega)\right|\right)+20 \log _{10}\left(\left|G_{2}(i \omega)\right|\right) \\
& =\left|G_{1}(i \omega)\right|_{d B}+\left|G_{2}(i \omega)\right|_{d B} .
\end{aligned}
$$

- Phase shift: $\arg (G(i \omega))=\arg \left(G_{1}(i \omega)\right)+\arg \left(G_{2}(i \omega)\right)$

Bode plots for systems connected in series

- Amplitude gain:

$$
|G(i \omega)|=\left|G_{1}(i \omega) G_{2}(i \omega)\right|=\left|G_{1}(i \omega)\right|\left|G_{2}(i \omega)\right|
$$

In decibel we thus get

$$
\begin{aligned}
|G(i \omega)|_{d B} & =20 \log _{10}\left(\left|G_{1}(i \omega)\right|\right)+20 \log _{10}\left(\left|G_{2}(i \omega)\right|\right) \\
& =\left|G_{1}(i \omega)\right|_{d B}+\left|G_{2}(i \omega)\right|_{d B}
\end{aligned}
$$

- Phase shift: $\arg (G(i \omega))=\arg \left(G_{1}(i \omega)\right)+\arg \left(G_{2}(i \omega)\right)$

The Bode plot for $G(s)$ is given by the adding up the amplitude and phase curves for $G_{1}(s)$ och $G_{2}(s)$!

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=$

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.
- Phase shift: $\arg \left(G_{1}(i \omega)\right)=\arg (2)=$

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.
- Phase shift: $\arg \left(G_{1}(i \omega)\right)=\arg (2)=0$.

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.
- Phase shift: $\arg \left(G_{1}(i \omega)\right)=\arg (2)=0$.

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.
- Phase shift: $\arg \left(G_{1}(i \omega)\right)=\arg (2)=0$.
- Add the curves!

Bode plots for systems connected in series

Example

If the Bode plot of $G_{2}(s)$ is given by the figure, and $G_{1}(s)=2$, what is the Bode plot for $G(s)=G_{2}(s) G_{1}(s)$?

- Amplitude gain: $\left|G_{1}(i \omega)\right|_{d B}=20 \log _{10}(2) \approx 6.02 d B$.
- Phase shift: $\arg \left(G_{1}(i \omega)\right)=\arg (2)=0$.
- Add the curves!

Nyquist plots

- Named after the Swedish born electronic engineer Harry Nyquist.
- Plot $\operatorname{Re}[G(i \omega)]$ against $\operatorname{Im}[G(i \omega)]$.

Figure: $G(s)=\frac{1}{s(1+s)^{2}}$.

Nyquist plots

- Named after the Swedish born electronic engineer Harry Nyquist.
- Plot $\operatorname{Re}[G(i \omega)]$ against $\operatorname{Im}[G(i \omega)]$.
- Can mark different frequencies.

Figure: $G(s)=\frac{1}{s(1+s)^{2}}$.

Nyquist plots

- Named after the Swedish born electronic engineer Harry Nyquist.
- Plot $\operatorname{Re}[G(i \omega)]$ against $\operatorname{Im}[G(i \omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.

Figure: $G(s)=\frac{1}{s(1+s)^{2}}$.

Nyquist plots

- Named after the Swedish born electronic engineer Harry Nyquist.
- Plot $\operatorname{Re}[G(i \omega)]$ against $\operatorname{Im}[G(i \omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.

Figure: $G(s)=\frac{1}{s(1+s)^{2}}$.

Nyquist plots

- Named after the Swedish born electronic engineer Harry Nyquist.
- Plot $\operatorname{Re}[G(i \omega)]$ against $\operatorname{Im}[G(i \omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.

Figure: $G(s)=\frac{1}{s(1+s)^{2}}$.
Matlab: » $G=\operatorname{tf}\left(1,\left[\begin{array}{llll}1 & 2 & 1 & 0\end{array}\right]\right)$; nyquist(G)

