

Review of Automatic Control

Frequency response

Per Mattsson

per.mattsson@hig.se

per.mattsson@hig.se

$$\xrightarrow{u(t)} G \xrightarrow{y(t)}$$

We have seen how the system reacts to a step in the input.

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.
- Many signals can be written as a sum of sinusoids of different frequencies (Fourier series).

- We have seen how the system reacts to a step in the input.
- We will now study how the system reacts to signals of different frequencies.
- Many signals can be written as a sum of sinusoids of different frequencies (Fourier series).
- For a linear system the output is then a linear combination of the frequency responses for each frequency in the input.

$$\begin{array}{c} u(t) \\ \hline G \end{array} \xrightarrow{y(t)}$$

Consider the sinusoid input

$$u(t) = K\sin(\omega t + \phi).$$

Consider the sinusoid input

$$u(t) = K\sin(\omega t + \phi).$$

If the system G(s) is stable then, after the transients have died out,

 $y(t) = |G(i\omega)|K\sin(\omega t + \phi + \arg(G(i\omega))).$

Consider the sinusoid input

$$u(t) = K\sin(\omega t + \phi).$$

If the system G(s) is stable then, after the transients have died out,

 $y(t) = |G(i\omega)| K \sin(\omega t + \phi + \arg(G(i\omega))).$

• Amplitude gain: $|G(i\omega)|$.

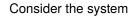
Consider the sinusoid input

$$u(t) = K\sin(\omega t + \phi).$$

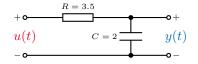
If the system G(s) is stable then, after the transients have died out,

 $y(t) = |G(i\omega)| K \sin(\omega t + \phi + \arg(G(i\omega))).$

- Amplitude gain: $|G(i\omega)|$.
- Phase shift: $\arg(G(i\omega))$.

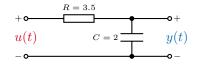


$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{1+7s}.$$

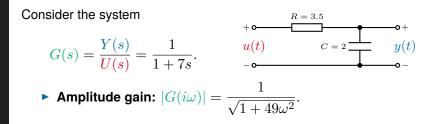


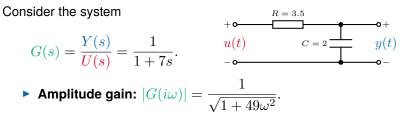
Consider the system

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{1+7s}$$

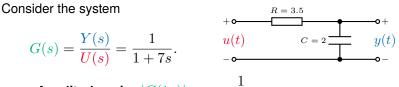


• Amplitude gain: $|G(i\omega)|$

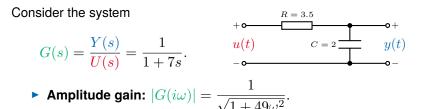




• Phase shift: $\arg(G(i\omega)) =$



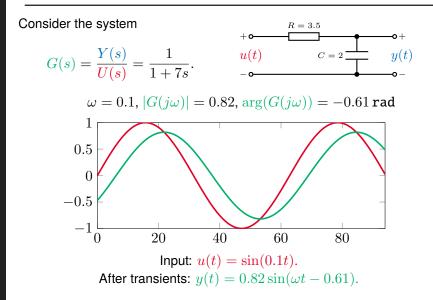
- Amplitude gain: $|G(i\omega)| = \frac{1}{\sqrt{1+49\omega^2}}$.
- Phase shift: $\arg(G(i\omega)) = -\arctan(7\omega)$.

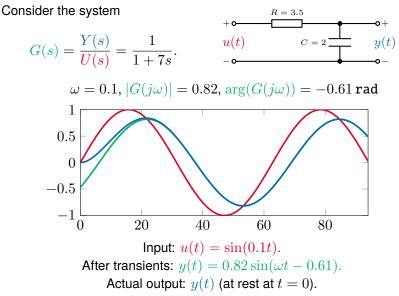


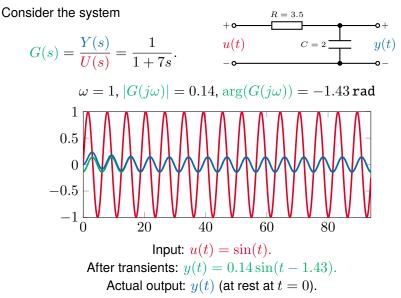
• Phase shift: $\arg(G(i\omega)) = -\arctan(7\omega)$.

The input $u(t) = \sin(\omega t)$ thus give (after the transients have died out)

$$y(t) = \frac{1}{\sqrt{1+49\omega^2}}\sin(\omega t - \arctan(7\omega)).$$







per.mattsson@hig.se

The amplitude gain |G(iω)| and the phase shift arg(G(iω)) shows how the system G(s) reacts to different frequencies ω in the input.

- The amplitude gain |G(iω)| and the phase shift arg(G(iω)) shows how the system G(s) reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω .

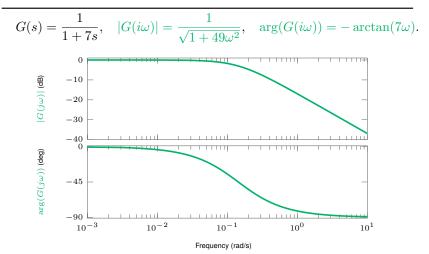
- The amplitude gain |G(iω)| and the phase shift arg(G(iω)) shows how the system G(s) reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω .
- Such plots are called Bode plots, after the American researcher Hendrik Wade Bode, who originally started using such plots in the 1930s.

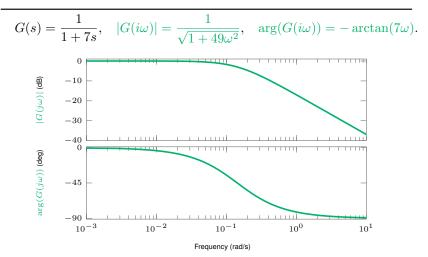
- The amplitude gain |G(iω)| and the phase shift arg(G(iω)) shows how the system G(s) reacts to different frequencies ω in the input.
- It is useful by plotting them as a function of ω .
- Such plots are called Bode plots, after the American researcher Hendrik Wade Bode, who originally started using such plots in the 1930s.
- A typical Bode plots:
 - **Frequency:** Often in radians/s, in logarithmic scale.
 - Amplitude gain: Often plotted in decibel,

 $|G(i\omega)|_{dB} = 20\log_{10}|G(i\omega)|.$

Phase shift: Often plotted in linear scale, with degrees as the unit.

Example

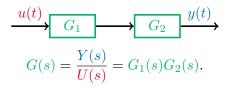


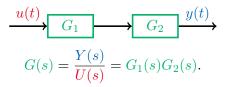


MATLAB:

- » G = tf([1] , [7 1])
- » bode(G)

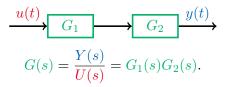
I GÄVLF





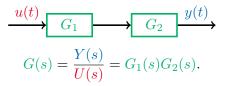
Amplitude gain:

 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)|$



Amplitude gain:

 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)| = |G_1(i\omega)||G_2(i\omega)|.$

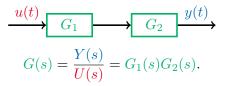


Amplitude gain:

 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)| = |G_1(i\omega)||G_2(i\omega)|.$

In decibel we thus get

 $|G(i\omega)|_{dB} = 20\log_{10}(|G_1(i\omega)|) + 20\log_{10}(|G_2(i\omega)|)$

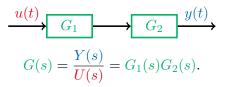


Amplitude gain:

 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)| = |G_1(i\omega)||G_2(i\omega)|.$

In decibel we thus get

 $|G(i\omega)|_{dB} = 20 \log_{10}(|G_1(i\omega)|) + 20 \log_{10}(|G_2(i\omega)|)$ = $|G_1(i\omega)|_{dB} + |G_2(i\omega)|_{dB}.$



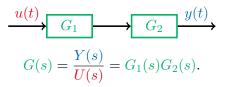
Amplitude gain:

 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)| = |G_1(i\omega)||G_2(i\omega)|.$

In decibel we thus get

 $|G(i\omega)|_{dB} = 20 \log_{10}(|G_1(i\omega)|) + 20 \log_{10}(|G_2(i\omega)|)$ = $|G_1(i\omega)|_{dB} + |G_2(i\omega)|_{dB}.$

• Phase shift: $\arg(G(i\omega)) = \arg(G_1(i\omega)) + \arg(G_2(i\omega))$



Amplitude gain:

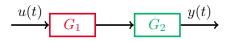
 $|G(i\omega)| = |G_1(i\omega)G_2(i\omega)| = |G_1(i\omega)||G_2(i\omega)|.$

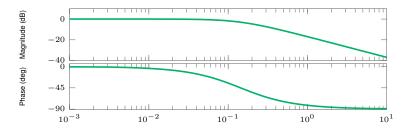
In decibel we thus get

 $|G(i\omega)|_{dB} = 20 \log_{10}(|G_1(i\omega)|) + 20 \log_{10}(|G_2(i\omega)|)$ = $|G_1(i\omega)|_{dB} + |G_2(i\omega)|_{dB}.$

• Phase shift: $\arg(G(i\omega)) = \arg(G_1(i\omega)) + \arg(G_2(i\omega))$

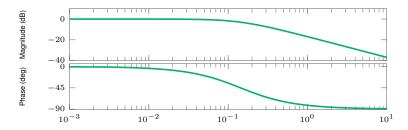
The Bode plot for G(s) is given by the adding up the amplitude and phase curves for $G_1(s)$ och $G_2(s)$!





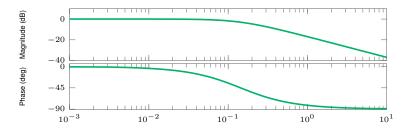
If the Bode plot of $G_2(s)$ is given by the figure, and $G_1(s) = 2$, what is the Bode plot for $G(s) = G_2(s)G_1(s)$?

• Amplitude gain: $|G_1(i\omega)|_{dB} =$



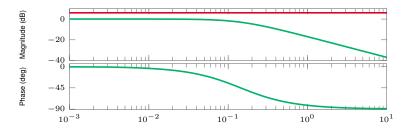
If the Bode plot of $G_2(s)$ is given by the figure, and $G_1(s) = 2$, what is the Bode plot for $G(s) = G_2(s)G_1(s)$?

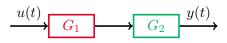
• Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.



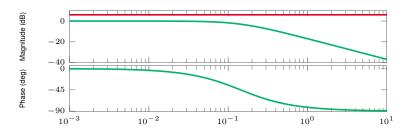
If the Bode plot of $G_2(s)$ is given by the figure, and $G_1(s) = 2$, what is the Bode plot for $G(s) = G_2(s)G_1(s)$?

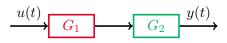
• Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.



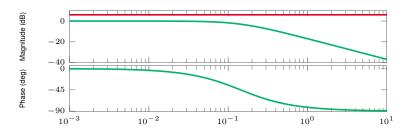


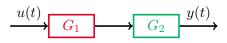
- Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.
- Phase shift: $\arg(G_1(i\omega)) = \arg(2) =$



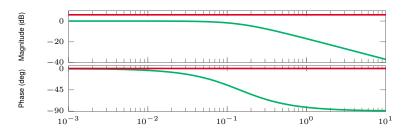


- Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.
- Phase shift: $\arg(G_1(i\omega)) = \arg(2) = 0.$

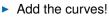


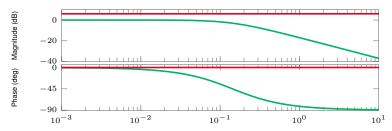


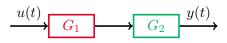
- Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.
- Phase shift: $\arg(G_1(i\omega)) = \arg(2) = 0.$



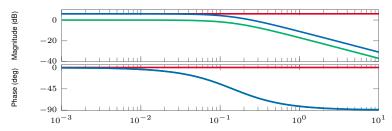
- Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.
- Phase shift: $\arg(G_1(i\omega)) = \arg(2) = 0.$



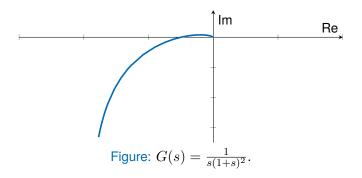




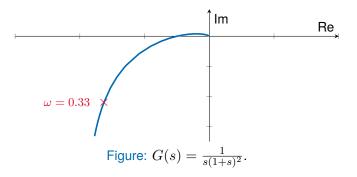
- Amplitude gain: $|G_1(i\omega)|_{dB} = 20 \log_{10}(2) \approx 6.02 \, dB$.
- Phase shift: $\arg(G_1(i\omega)) = \arg(2) = 0.$
- Add the curves!



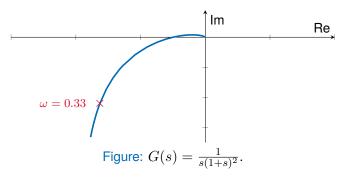
- Named after the Swedish born electronic engineer Harry Nyquist.
- ▶ Plot $\operatorname{Re}[G(i\omega)]$ against $\operatorname{Im}[G(i\omega)]$.



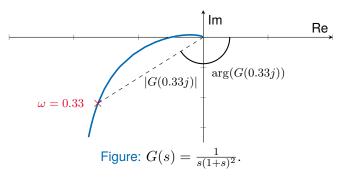
- Named after the Swedish born electronic engineer Harry Nyquist.
- ▶ Plot $\operatorname{Re}[G(i\omega)]$ against $\operatorname{Im}[G(i\omega)]$.
- Can mark different frequencies.



- Named after the Swedish born electronic engineer Harry Nyquist.
- ▶ Plot $\operatorname{Re}[G(i\omega)]$ against $\operatorname{Im}[G(i\omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.



- Named after the Swedish born electronic engineer Harry Nyquist.
- ▶ Plot $\operatorname{Re}[G(i\omega)]$ against $\operatorname{Im}[G(i\omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.



- Named after the Swedish born electronic engineer Harry Nyquist.
- ▶ Plot $\operatorname{Re}[G(i\omega)]$ against $\operatorname{Im}[G(i\omega)]$.
- Can mark different frequencies.
- Can get the amplitude gain and phase shift from the plot.

