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Introduction

G
u(t) y(t)

I In control, the concept of stability is very important.

I Bounded-input/bounded-output (BIBO): We say that a system
is BIBO-stable if a bounded input u(t) results in a bounded output
y(t).
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Poles, zeros, stability

G(s)
u(t) y(t)

Consider a linear SISO-system

G(s) =
b1s

n−1 + b2s
n−2 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
.

I Poles: The poles of G(s) are given by the zeros of the
denominator, i.e., the solutions to

sn + a1s
n−1 + · · ·+ an−1s+ an = 0.

I Zeros: The zeros of G(s) are given by the zeros of the
numerator, i.e., the solutions to

b1s
n−1 + b2s

n−2 + · · ·+ bn−1s+ bn = 0.

I Stability: G(s) is stable if and only if all poles have strictly
negative real part (lie in the left half-plane).
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State space models

Consider the state-space model

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).

I Poles: The poles of the system, i.e. zeros of the denominator in
G(s) = C(sI −A)−1B +D, are eigenvalues of A.

I Solution to the state equation:

x(t) = eA(t−to)x(to) +

∫ t

to

eA(t−τ)Bu(τ)dτ,

where eAt is the matrix exponential of At.
I If all eigenvalues of A have strictly negative real-part, then

eAt → 0, as t→∞.
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The matrix exponential

I The matrix exponential eAt is defined as

eAt = I +At+
1

2
(At)2 + · · ·+ 1

k!
(At)k + · · ·

and can be computed using

eAt = L−1
[
(sI −A)−1

]
(t).

In Matlab: » expm(A*t)

I If the eigenvalues of A are given by λ1, . . . , λn, then the
eigenvalues of eAt are given by eλ1t, . . . , eλnt.

I Note that the eigenvalues of eAt goes to 0 as t→∞ if and only if
they have strictly negative real-part.
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Diagonal form

If A is a diagonal matrix,

A =

λ1 0
. . .

0 λn

 , then eAt =
e

λ1t 0
. . .

0 eλnt

 .
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Example

Consider the system

ẋ(t) =

[
λ1 0
0 λ2

]
x(t) +

[
1
1

]
u(t)

y(t) =
[
1 1

]
x(t).

The eigenvalues of A (and the poles of the system) are λ1 and λ2.

If

u(t) = 0, and the initial state is x(0) =
[
c1
c2

]
, then the solution is

x(t) = eAtx(0) =

[
eλ1t 0
0 eλ2t

] [
c1
c2

]
=

[
c1e

λ1t

c2e
λ2t

]
y(t) =

[
1 1

]
x(t) = c1e

λ1t + c2e
λ2t.

Hence, if the system is stable (all poles in the left half-plane), then
y(t)→ 0 if u(t) = 0. But if at least one pole is in the right half-plane,
then |y(t)| → ∞.
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ẋ(t) =

[
λ1 0
0 λ2

]
x(t) +

[
1
1

]
u(t)

y(t) =
[
1 1

]
x(t).

The eigenvalues of A (and the poles of the system) are λ1 and λ2. If

u(t) = 0, and the initial state is x(0) =
[
c1
c2

]
, then the solution is

x(t) = eAtx(0) =

[
eλ1t 0
0 eλ2t

] [
c1
c2

]

=

[
c1e

λ1t

c2e
λ2t

]
y(t) =

[
1 1

]
x(t) = c1e

λ1t + c2e
λ2t.

Hence, if the system is stable (all poles in the left half-plane), then
y(t)→ 0 if u(t) = 0. But if at least one pole is in the right half-plane,
then |y(t)| → ∞.

6 / 6 per.mattsson@hig.se

mailto:per.mattsson@hig.se


Example

Consider the system
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