Review of Automatic Control

Poles, stability and more

Per Mattsson

per.mattsson@hig.se

Introduction

- In control, the concept of stability is very important.

Introduction

- In control, the concept of stability is very important.
- Bounded-input/bounded-output (BIBO): We say that a system is BIBO-stable if a bounded input $u(t)$ results in a bounded output $y(t)$.

Poles, zeros, stability

$$
\xrightarrow{u(t)} \xrightarrow[G(s)]{ }
$$

Consider a linear SISO-system

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

Poles, zeros, stability

$$
\xrightarrow{u(t)} \xrightarrow[G(s)]{ }
$$

Consider a linear SISO-system

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

- Poles: The poles of $G(s)$ are given by the zeros of the denominator, i.e., the solutions to

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}=0
$$

Poles, zeros, stability

$$
\xrightarrow{u(t)} \xrightarrow{G(s)} \xrightarrow{y(t)}
$$

Consider a linear SISO-system

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

- Poles: The poles of $G(s)$ are given by the zeros of the denominator, i.e., the solutions to

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}=0
$$

- Zeros: The zeros of $G(s)$ are given by the zeros of the numerator, i.e., the solutions to

$$
b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}=0
$$

Poles, zeros, stability

$$
\xrightarrow{u(t)} \xrightarrow[G(s)]{ }
$$

Consider a linear SISO-system

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

- Poles: The poles of $G(s)$ are given by the zeros of the denominator, i.e., the solutions to

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}=0 .
$$

- Zeros: The zeros of $G(s)$ are given by the zeros of the numerator, i.e., the solutions to

$$
b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}=0
$$

- Stability: $G(s)$ is stable if and only if all poles have strictly negative real part (lie in the left half-plane).

State space models

Consider the state-space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

State space models

Consider the state-space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- Poles: The poles of the system, i.e. zeros of the denominator in $G(s)=C(s I-A)^{-1} B+D$, are eigenvalues of A.

State space models

Consider the state-space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- Poles: The poles of the system, i.e. zeros of the denominator in $G(s)=C(s I-A)^{-1} B+D$, are eigenvalues of A.
- Solution to the state equation:

$$
x(t)=e^{A\left(t-t_{o}\right)} x\left(t_{o}\right)+\int_{t_{o}}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

where $e^{A t}$ is the matrix exponential of $A t$.

State space models

Consider the state-space model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- Poles: The poles of the system, i.e. zeros of the denominator in $G(s)=C(s I-A)^{-1} B+D$, are eigenvalues of A.
- Solution to the state equation:

$$
x(t)=e^{A\left(t-t_{o}\right)} x\left(t_{o}\right)+\int_{t_{o}}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

where $e^{A t}$ is the matrix exponential of $A t$.

- If all eigenvalues of A have strictly negative real-part, then

$$
e^{A t} \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty .
$$

The matrix exponential

- The matrix exponential $e^{A t}$ is defined as

$$
e^{A t}=I+A t+\frac{1}{2}(A t)^{2}+\cdots+\frac{1}{k!}(A t)^{k}+\cdots
$$

and can be computed using

$$
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right](t)
$$

The matrix exponential

- The matrix exponential $e^{A t}$ is defined as

$$
e^{A t}=I+A t+\frac{1}{2}(A t)^{2}+\cdots+\frac{1}{k!}(A t)^{k}+\cdots
$$

and can be computed using

$$
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right](t)
$$

In Matlab: » expm $(A * t)$

The matrix exponential

- The matrix exponential $e^{A t}$ is defined as

$$
e^{A t}=I+A t+\frac{1}{2}(A t)^{2}+\cdots+\frac{1}{k!}(A t)^{k}+\cdots
$$

and can be computed using

$$
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right](t)
$$

In Matlab: » expm(A*t)

- If the eigenvalues of A are given by $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $e^{A t}$ are given by $e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$.

The matrix exponential

- The matrix exponential $e^{A t}$ is defined as

$$
e^{A t}=I+A t+\frac{1}{2}(A t)^{2}+\cdots+\frac{1}{k!}(A t)^{k}+\cdots
$$

and can be computed using

$$
e^{A t}=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right](t)
$$

In Matlab: » $\operatorname{expm}(A * t)$

- If the eigenvalues of A are given by $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $e^{A t}$ are given by $e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$.
- Note that the eigenvalues of $e^{A t}$ goes to 0 as $t \rightarrow \infty$ if and only if they have strictly negative real-part.

Diagonal form

If A is a diagonal matrix,

$$
A=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right] \text {, then } e^{A t}=\left[\begin{array}{ccc}
e^{\lambda_{1} t} & & 0 \\
& \ddots & \\
0 & & e^{\lambda_{n} t}
\end{array}\right] .
$$

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}.

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}. If $u(t)=0$, and the initial state is $x(0)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, then the solution is

$$
x(t)=e^{A t} x(0)
$$

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}. If $u(t)=0$, and the initial state is $x(0)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, then the solution is

$$
x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}. If $u(t)=0$, and the initial state is $x(0)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, then the solution is

$$
x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t}
\end{array}\right]
$$

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}. If $u(t)=0$, and the initial state is $x(0)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, then the solution is

$$
\begin{aligned}
& x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t}
\end{array}\right] \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}
\end{aligned}
$$

Hence, if the system is stable (all poles in the left half-plane), then $y(t) \rightarrow 0$ if $u(t)=0$.

Example

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)
\end{aligned}
$$

The eigenvalues of A (and the poles of the system) are λ_{1} and λ_{2}. If $u(t)=0$, and the initial state is $x(0)=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$, then the solution is

$$
\begin{aligned}
& x(t)=e^{A t} x(0)=\left[\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
c_{1} e^{\lambda_{1} t} \\
c_{2} e^{\lambda_{2} t}
\end{array}\right] \\
& y(t)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}
\end{aligned}
$$

Hence, if the system is stable (all poles in the left half-plane), then $y(t) \rightarrow 0$ if $u(t)=0$. But if at least one pole is in the right half-plane, then $|y(t)| \rightarrow \infty$.

