Review of Automatic Control State space models

Per Mattsson

per.mattsson@hig.se

Introduction

- We have seen how to represent a linear system with a transfer function $G(s)$

$$
\begin{aligned}
& Y(s)=G(s) U(s) \\
& \xrightarrow{u(t)} \xrightarrow{ } \xrightarrow{y(t)}
\end{aligned}
$$

Introduction

- We have seen how to represent a linear system with a transfer function $G(s)$

$$
\begin{aligned}
& Y(s)=G(s) U(s) \\
& \xrightarrow{u(t)} G G \xrightarrow{y(t)}
\end{aligned}
$$

- This form is especially useful when we study how the system reacts to different frequencies in the input.

Introduction

- We have seen how to represent a linear system with a transfer function $G(s)$

$$
\begin{aligned}
& Y(s)=G(s) U(s) \\
& \xrightarrow{u(t)} G G \xrightarrow{y(t)}
\end{aligned}
$$

- This form is especially useful when we study how the system reacts to different frequencies in the input.
- Another popular type of linear models are the state space models.

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

Example: Level-system

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

Example: Level-system

- All past inputs: $x(t)=\{u(\tau), \tau<t\}$ (infinite amount of information).

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

Example: Level-system

- All past inputs: $x(t)=\{u(\tau), \tau<t\}$ (infinite amount of information).
- Water level: $x(t)=\left[\begin{array}{l}h_{1}(t) \\ h_{2}(t)\end{array}\right]$.

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

Example: Level-system

- All past inputs: $x(t)=\{u(\tau), \tau<t\}$ (infinite amount of information).
- Water level: $x(t)=\left[\begin{array}{l}h_{1}(t) \\ h_{2}(t)\end{array}\right]$.
- Volume: $x(t)=\left[\begin{array}{l}V_{1}(t) \\ V_{2}(t)\end{array}\right]=\left[\begin{array}{l}A_{1} h_{1}(t) \\ A_{2} h_{2}(t)\end{array}\right]$.

State space models

- In a dynamical system, the output $y(t)$ at time t does not only depend on the current input $u(t)$, but also on $u(\tau), \tau<t$.

The state of a system

The state $x(t)$ of a system contains all the information necessary to unambiguously determine future outputs if future inputs are known.

Example: Level-system

- All past inputs: $x(t)=\{u(\tau), \tau<t\}$ (infinite amount of information).
- Water level: $x(t)=\left[\begin{array}{l}h_{1}(t) \\ h_{2}(t)\end{array}\right]$.
- Volume: $x(t)=\left[\begin{array}{l}V_{1}(t) \\ V_{2}(t)\end{array}\right]=\left[\begin{array}{l}A_{1} h_{1}(t) \\ A_{2} h_{2}(t)\end{array}\right]$.
- Infinite number of ways to choose the states.

State space form

Linear system

An LTI-system can be written on state-space form as

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where $x(t)$ is the state vector, and A, B, C, D are matrices.

State space form

Linear system

An LTI-system can be written on state-space form as

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where $x(t)$ is the state vector, and A, B, C, D are matrices.

Matlab: » sys = ss(A,B,C,D);

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$.

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\dot{x}(t)=\left[\begin{array}{l}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\dot{x}(t)=\left[\begin{array}{l}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\underbrace{[}_{A} \quad x(t)+\underbrace{\left.[]^{[}\right]}_{B} u(t)
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\dot{x}(t)=\left[\begin{array}{l}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
&
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
0 \\
]
\end{array}\right.}_{B} u(t)
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\dot{x}(t)=\left[\begin{array}{l}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & 0
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right]}_{B} u(t)
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{c}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & 0
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right]}_{B} u(t), \\
& y(t)=\underbrace{[\quad]}_{C} x(t)+\underbrace{[]}_{D} u(t) .
\end{aligned}
$$

Example: Spring

Using Newton's second law, and Hooke's law we get:

$$
\begin{equation*}
\ddot{y}(t)=-\frac{k}{m} y(t)+\frac{1}{m} u(t) \tag{1}
\end{equation*}
$$

- If the position and velocity are known, we can compute future outputs if future inputs are known.
- Let $x(t)=\left[\begin{array}{l}y(t) \\ \dot{y}(t)\end{array}\right]$. From (1) we get

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{c}
\dot{y}(t) \\
\ddot{y}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & 0
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right]}_{B} u(t), \\
& y(t)=\underbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right]}_{C} x(t)+\underbrace{[0]}_{D} u(t) .
\end{aligned}
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s)
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s) .
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$, and

$$
Y(s)=C X(s)+D U(s)=
$$

From state space form to transfer function

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$, and

$$
Y(s)=C X(s)+D U(s)=C(s I-A)^{-1} B U(s)+D U(s) .
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$, and

$$
Y(s)=C X(s)+D U(s)=C(s I-A)^{-1} B U(s)+D U(s) .
$$

Hence, the transfer function is given by

$$
G(s)=
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$, and

$$
Y(s)=C X(s)+D U(s)=C(s I-A)^{-1} B U(s)+D U(s) .
$$

Hence, the transfer function is given by

$$
G(s)=C(s I-A)^{-1} B+D
$$

From state space form to transfer function

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned} \longrightarrow Y(s)=G(s) U(s)
$$

Using the Laplace transform we get

$$
s X(s)=A X(s)+B U(s) \Longleftrightarrow(s I-A) X(s)=B U(s)
$$

hence $X(s)=(s I-A)^{-1} B U(s)$, and

$$
Y(s)=C X(s)+D U(s)=C(s I-A)^{-1} B U(s)+D U(s) .
$$

Hence, the transfer function is given by

$$
G(s)=C(s I-A)^{-1} B+D
$$

MatLab: » sys = ss(A,B,C,D); G = tf(sys);

From transfer function to state space

$$
Y(s)=G(s) U(s) \longrightarrow \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

From transfer function to state space

$$
Y(s)=G(s) U(s) \longrightarrow \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

- For every transfer function, there exists an infinite number of state space representations.

From transfer function to state space

$$
Y(s)=G(s) U(s) \longrightarrow \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

- For every transfer function, there exists an infinite number of state space representations.
- MatLab: » sys = ss(G) (Gives one state space realization. canon can be used to find other)

From transfer function to state space

$$
Y(s)=G(s) U(s) \longrightarrow \begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

- For every transfer function, there exists an infinite number of state space representations.
- MatLab: » sys = ss(G) (Gives one state space realization. canon can be used to find other)
- Canonical forms.

Canonical forms

Observable canonical form

A SISO-system with the transfer function

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

Observable canonical form:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ccccc}
-a_{1} & 1 & 0 & \cdots & 0 \\
-a_{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{n-1} & 0 & 0 & \cdots & 1 \\
-a_{n} & 0 & 0 & \cdots & 0
\end{array}\right] x(t)+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0
\end{array}\right] x(t)
\end{aligned}
$$

Canonical forms

Controllable form

A SISO-system with the transfer function

$$
G(s)=\frac{b_{1} s^{n-1}+b_{2} s^{n-2}+\cdots+b_{n-1} s+b_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} .
$$

Controllable canonical form:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] x(t)+\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right] x(t) .
\end{aligned}
$$

Some concepts

- Let n be the number of states (elements in $x(t)$)

Some concepts

- Let n be the number of states (elements in $x(t)$)
- Observable if and only if the matrix

$$
\mathcal{O}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

has full rank. Observable canonical form \Rightarrow observable.

Some concepts

- Let n be the number of states (elements in $x(t)$)
- Observable if and only if the matrix

$$
\mathcal{O}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

has full rank. Observable canonical form \Rightarrow observable.

- Controllable if and only if the matrix

$$
\mathcal{S}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has full rank. Controllable canonical form \Rightarrow Controllable.

Some concepts

- Let n be the number of states (elements in $x(t)$)
- Observable if and only if the matrix

$$
\mathcal{O}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

has full rank. Observable canonical form \Rightarrow observable.

- Controllable if and only if the matrix

$$
\mathcal{S}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has full rank. Controllable canonical form \Rightarrow Controllable.

- Minimal realization if and only if both controllable and observable. For a minimal realization, it is not possible to find a state space representation with fewer states.

